首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20142篇
  免费   1579篇
  国内免费   11篇
  2023年   64篇
  2022年   46篇
  2021年   348篇
  2020年   219篇
  2019年   311篇
  2018年   375篇
  2017年   340篇
  2016年   555篇
  2015年   931篇
  2014年   1058篇
  2013年   1319篇
  2012年   1527篇
  2011年   1424篇
  2010年   946篇
  2009年   867篇
  2008年   1133篇
  2007年   1064篇
  2006年   1081篇
  2005年   1049篇
  2004年   984篇
  2003年   864篇
  2002年   916篇
  2001年   257篇
  2000年   207篇
  1999年   248篇
  1998年   269篇
  1997年   202篇
  1996年   207篇
  1995年   197篇
  1994年   209篇
  1993年   205篇
  1992年   182篇
  1991年   148篇
  1990年   118篇
  1989年   136篇
  1988年   133篇
  1987年   95篇
  1986年   93篇
  1985年   114篇
  1984年   139篇
  1983年   102篇
  1982年   131篇
  1981年   103篇
  1980年   96篇
  1979年   80篇
  1978年   75篇
  1977年   72篇
  1976年   49篇
  1974年   50篇
  1973年   59篇
排序方式: 共有10000条查询结果,搜索用时 203 毫秒
21.
22.
Extremely miniaturized longipedes insects (body length c. 0.3 mm) embedded in two pieces of Cretaceous amber from Myanmar are described and interpreted. Using inverted fluorescence and light microscopy for detailed analysis of microstructures, the inclusions were identified as primary larvae of the beetle family Ripiphoridae, subfamily Ripidiinae. While the structure of thoracic and abdominal segments including appendages corresponds well with the groundplan known in recent members of Ripidiinae, a curved prosternal ridge with prominent spines (each c. 5 μm), the reduced condition of stemmata and antennae and the lack of sharp mandibles are unique features within the entire family, apparently apomorphies of the longipedes larvae. A sinuate prosternal edge with a dense row of spines (prosternoctenidium) might be homologous with ‘head ctenidia’ in some previously described miniaturized conicocephalate larvae, but further investigation is needed. The morphological differences between the head of longipedes larvae and extant Ripidiinae are interpreted as adaptations to different groups of hosts and life strategies. Palaeoethology of the longipedes larvae is briefly discussed. In addition, the systematic placement of conicocephalate larvae from Canadian, Myanmar and Russian Cretaceous ambers, already interpreted by various authors as primary instars within Coleopterida (assigned to either Strepsiptera or to the coleopteran Tenebrionoidea: Ripiphoridae), is discussed.  相似文献   
23.
24.
25.
26.
In this review, our current understanding of the species Escherichia coli and its persistence in the open environment is examined. E. coli consists of six different subgroups, which are separable by genomic analyses. Strains within each subgroup occupy various ecological niches, and can be broadly characterized by either commensalistic or different pathogenic behaviour. In relevant cases, genomic islands can be pinpointed that underpin the behaviour. Thus, genomic islands of, on the one hand, broad environmental significance, and, on the other hand, virulence, are highlighted in the context of E. coli survival in its niches. A focus is further placed on experimental studies on the survival of the different types of E. coli in soil, manure and water. Overall, the data suggest that E. coli can persist, for varying periods of time, in such terrestrial and aquatic habitats. In particular, the considerable persistence of the pathogenic E. coli O157:H7 is of importance, as its acid tolerance may be expected to confer a fitness asset in the more acidic environments. In this context, the extent to which E. coli interacts with its human/animal host and the organism''s survivability in natural environments are compared. In addition, the effect of the diversity and community structure of the indigenous microbiota on the fate of invading E. coli populations in the open environment is discussed. Such a relationship is of importance to our knowledge of both public and environmental health.  相似文献   
27.
The precise regulation of synapse maintenance is critical to the development and function of neuronal circuits. Using an in vivo RNAi screen targeting the Drosophila kinome and phosphatome, we identify 11 kinases and phosphatases controlling synapse stability by regulating cytoskeletal, phospholipid, or metabolic signaling. We focus on casein kinase 2 (CK2) and demonstrate that the regulatory (β) and catalytic (α) subunits of CK2 are essential for synapse maintenance. CK2α kinase activity is required in the presynaptic motoneuron, and its interaction with CK2β, mediated cooperatively by two N-terminal residues of CK2α, is essential for CK2 holoenzyme complex stability and function in vivo. Using genetic and biochemical approaches we identify Ankyrin2 as a key presynaptic target of CK2 to maintain synapse stability. In addition, CK2 activity controls the subcellular organization of individual synaptic release sites within the presynaptic nerve terminal. Our study identifies phosphorylation of structural synaptic components as a compelling mechanism to actively control the development and longevity of synaptic connections.  相似文献   
28.
In this paper, we present a model for the development of connections between muscle afferents and motoneurones in the human spinal cord. The model consists of a limb with six muscles, one motoneurone pool, one pooled (Ia-like) afferent for each muscle and a central programme generator. The weights of the connections between the afferents and the motoneurone pools are adapted during centrally induced movements of the limb. The connections between the afferents and the motoneurone pools adapt in a hebbian way, using only local information present at the synapses. This neural network is tested in two examples of a limb with two degrees of freedom and six muscles. Despite the simplifications, the model predicts the pattern of autogenic and heterogenic monosynaptic reflexes quite realistically.  相似文献   
29.
When grown under a variety of stress conditions, cyanobacteria express the isiA gene, which encodes the IsiA pigment-protein complex. Overexpression of the isiA gene under iron-depletion stress conditions leads to the formation of large IsiA aggregates, which display remarkably short fluorescence lifetimes and thus a strong capacity to dissipate energy. In this work we investigate the underlying molecular mechanism responsible for chlorophyll fluorescence quenching. Femtosecond transient absorption spectroscopy allowed us to follow the process of energy dissipation in real time. The light energy harvested by chlorophyll pigments migrated within the system and eventually reaches a quenching site where the energy is transferred to a carotenoid-excited state, which dissipates it by decaying to the ground state. We compare these findings with those obtained for the main light-harvesting complex in green plants (light-harvesting complex II) and artificial light-harvesting antennas, and conclude that all of these systems show the same mechanism of energy dissipation, i.e., one or more carotenoids act as energy dissipators by accepting energy via low-lying singlet-excited S1 states and dissipating it as heat.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号